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Abstract
While laser-induced graphitic carbon (LIGC) has been used to fabricate cost-effective conductive
carbon on flexible substrates for applications such as sensors and energy storage devices, predicting
the resistance of the component fabricated via LIGC remains challenging. In this study, a two-step
machine learning-based modeling framework is developed to predict the sheet resistance of the
materials fabricated using LIGC. The two-step modeling framework consists of classification and
regression. First, random forest (RF) is used to classify successful and failed trials. Second, extreme
gradient boosting (XGBoost), RF, support vector machine with radial basis function, multivariate
adaptive spline regression, and multilayer perceptron are used to predict the sheet resistance in
each successful trial. In addition, an analysis of the change in sheet resistance with respect to laser
energy per unit area is conducted to remove data points with high sheet resistance. XGBoost is also
used to determine the importance of each process parameter. We demonstrate the modeling
framework on datasets collected from experiments where LIGC lines (1D) and LIGC squares (2D)
are engraved. For the 1D dataset, the RF classification model achieves a 95% accuracy. For both 1D
and 2D datasets, a comparative study shows that XGBoost outperforms other algorithms. XGBoost
predicts the sheet resistance of the LIGC lines and squares with a MAPE of 7.08% and 8.75%,
respectively. XGBoost also identifies laser resolution as the most significant parameter. Moreover,
experimental results show that models built on the dataset merging the 1D and 2D datasets result
in lower prediction accuracy than those built on the 1D and 2D datasets separately. The modeling
framework allows one to determine the sheet resistance of LIGC with varying laser processing
conditions without conducting expensive and time-consuming experiments.

1. Introduction

The fabrication of graphene is crucial to a wide
range of applications, including biomedical sensors,
energy storage, and electrocatalysis due to its high
thermal and electrical conductivity, strong mechan-
ical properties, and biocompatibility [1]. The scal-
able deposition and patterning of graphene over large
areas on flexible substrates can enable wearable and
flexible electronics systems [2, 3]. However, tradi-
tional top-down or bottom-up graphene fabrica-
tion techniques require harmful chemicals or high-
temperature vacuum processes, which are complex,

expensive, and potentially incompatible with flex-
ible substrates [4]. Furthermore, the resulting mater-
ial needs to be patterned by photolithography and
etching, which are also complex, multi-step pro-
cesses that require the preparation of photomasks
[5]. By contrast, graphene can be fabricated by dir-
ectly converting polymeric substrates into graphene
using a laser [6, 7]. This one-step process, known
as laser-induced graphene (LIG) or laser-induced
graphitic carbon (LIGC), does not require separ-
ate patterning or post-processing. LIGC is compat-
ible with flexible substrates, most commonly poly-
imide, 3D printed polymers [8], and other organic
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materials, including paper and wood [9]. The res-
ulting material has a porous morphology with a
large specific surface area, making it ideal as elec-
trodes for micro-supercapacitors. Depending on the
laser conditions and polymer precursor, the mater-
ial properties can vary, including flake size, number
of graphene layers in each flake, and concentration
of non-carbon atoms [10, 11]. Different devices and
applications require different LIGC properties; how-
ever, the sheet resistance of LIGC is a fundamental
property that affects the performance of most elec-
trical LIGC-based devices in different applications. It
is, therefore, essential to understand how laser condi-
tions affect the sheet resistance.

Many studies have been conducted to optimize
the LIGC sheet resistance based on the underlying
physics of the process. Minhas-Khan et al [12] dis-
cussed several studies on polyimide with sheet resist-
ance in the range of 10–50 Ω sq−1. By increasing the
overlap between adjacent pulses and maximizing the
energy delivered to the polymer, a sheet resistance of
6.14 Ω sq−1 was achieved with a CO2 laser on poly-
imide. Tavakkoli Gilavan et al [8] created very thick
LIG on 3D-printed polyetherimide, which resulted in
a very low sheet resistance of 0.30 Ω sq−1. Morosawa
et al [13] proposed a LIG process with the femto-
second laser and cellulose nanofiber film substrate to
fabricate highly conductive graphitic carbon with a
conductivity of 6.9 S cm−1. For biomedical applica-
tions, Zhu et al [14] developed a coating process of
various uniformmetals on the LIG sheet with electro-
less plating for sensing glucose in diabetes patients. A
good conductance of 25 S sq−1 was achieved. Joanni
et al [15] introduced a novel method of transferring
the graphene pattern through glass plates to arbitrary
substrates. With this process, a LIG pattern was suc-
cessfully transferred frompolyimide to polydimethyl-
siloxane, and a low resistivity of 68 µΩ m−1 was
achieved. Nova and Zarzar [16] introduced a direct
laser writing method from liquid organic precursors.
An inorganic glass substrate, CO2 laser, and liquid
precursors were utilized to fabricate sheets with sheet
resistance as low as 4 Ω sq−1.

In addition to these experimental studies, the
LIGC process was investigated using numerical sim-
ulations. While multiphysics models were developed
to understand the temperature evolution during the
LIGC process [12], further investigations are needed
to give direct insights into the conversion of the poly-
mer into LIGC.Molecular dynamics simulationswere
used to study the LIGC process at the atomic level
[17, 18]; however, this approach was limited in terms
of the spatial and temporal scales that could be sim-
ulated due to computational limitations. Machine
learning is an alternative approach to modeling the
LIGC process. Using Bayesian model-based optim-
ization, a notable improvement of the Raman G/D

ratio, which indicates the degree of graphitization in
the LIG patterns, was achieved by a factor of four
[19, 20]. Furthermore, to monitor the process of LIG
formation, computer vision and deep transfer learn-
ing models were developed [21]. Unlabeled images
of LIG sheets were classified with labeled images as
training data; thus, graphitization quality could be
evaluated during manufacturing. An artificial neural
network model was developed to track the degrada-
tion and predict the life cycle of LIG integrated into
a composite structure. The non-linear damage pro-
gression within the structure was realized [22, 23].
Despite the advancements in applying monitoring
and predictive models, predicting LIG sheet resist-
ance using machine learning has yet to be reported.
To fill this research gap, this paper aims to develop a
two-step machine learning-based framework to pre-
dict the LIGC sheet resistance.

The main advantage of machine learning mod-
els is the ability to discover hidden, complex, and
non-linear relationships between independent vari-
ables and target variable(s) when the knowledge of
the underlying physics of a process or a system is
limited. The two-stepmachine learning-based frame-
work we developed can predict the LIGC sheet resist-
ance with different laser configurations and determ-
ine the importance of process parameters. Due to
the presence of non-numerical sheet resistance val-
ues when the polymer was not converted to LIG,
both classification and regression algorithms were
implemented. First, a machine learning algorithm
was used to classify these non-numerical values
indicating success or failure in producing graphitic
carbon on the material surface due to insufficient
or excessive laser power. Second, another machine
learning algorithm was used to predict the LIGC
sheet resistance for successful engravement. Random
forest (RF) was chosen to build the classification
model. Extreme gradient boosting (XGBoost), RF,
support vector machine with radial basis function
(SVM-RBF), multivariate adaptive spline regression
(MARS), andmultilayer perceptron (MLP) were used
to build regression models. These algorithms were
selected due to their excellent performance, robust-
ness, and wide applications in various manufactur-
ing fields [24–28]. However, due to outliers and noise
in the raw data, we developed a filtering method
by analyzing sheet resistance change with respect to
laser power. The contributions of this work are as
follows:

• This study demonstrated that machine learning
models can predict the sheet resistance of the LIGC
process with high accuracy.

• A novel filtering technique was developed to
eliminate outliers (i.e., high sheet resistance data
points) caused by unstable laser conditions.
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Figure 1. Schematics of experimental procedures describing (a) different laser lines, (b) (i) single line of LIGC at different laser
resolutions; (ii) different number of laser lines at fixed laser resolution; (iii) square LIGC pattern. Reprinted from [12], Copyright
(2021), with permission from Elsevier.

• Important laser parameters, which significantly
affect the sheet resistance, were identified using
XGBoost.

2. Experimental setup and data
description

The fabrication and characterization of the LIGC
sheet resistance were comprehensively described and
analyzed by Minhas-Khan et al [12]; hence, only a
summary of the LIGC sheet resistance data collec-
tion is provided. This section focuses on the discus-
sion of the independent variables used to build the
models. In short, a 75WCO2 laser (Epilog FusionM2
Laser) was used to convert a 1 cm by 1 cm square area
of commercially available polyimide tape (Kapton,
125 µm thickness) into LIGC. The laser power was
varied by pulse width modulation as a percentage of
the maximum 75W. The sheet resistance of the LIGC
was measured using the four-point resistance meas-
urementmethod. Figure 1 shows the experiment pro-
cedures for engraving different LIGC configurations.

Two datasets were generated from the experi-
ments. One is referred to as 1D (LIGC lines) dataset
where LIGC lines were engraved; the other is referred
to as 2D (LIGC squares) dataset where LIGC squares
were engraved. The 1D and 2D datasets contain 200
and 370 data points, respectively. The 1D dataset con-
tains information about (1) laser lines (number of
parallel lines that are engraved or irradiated), (2) laser
resolution (dot per inch), (3) laser velocity (milli-
meter per second), (4) a percentage of 75 W laser
power (%), (5) energy per pulse (joules), (6) energy
per unit area (EPUA) (joules per centimeter squared),
(7) irradiated width (micrometers), and (8) sheet res-
istance (Ω sq−1). The 2D dataset contains similar
information without laser lines and irradiated width.

In the 2D experiments, a square (or grid) pattern was
used to guide the laser motion; hence, the number
of laser lines passing over any point at the center of
the square is directly proportional to laser resolution,
and irradiated width is constant and practically infin-
ite (4 mm by 4 mm). While there are eight and six
variables in the 1D and 2D datasets, respectively, laser
EPUA and laser energy per pulse were not considered
when building predictive models because they were
determined based on other variables. Another char-
acteristic of the dataset was the non-numerical values
of sheet resistance (i.e., phrases or string values) when
no conductive LIGC was created, which were recor-
ded as ‘ablated’ or ‘no LIGC engraved’. These non-
numerical values, which were observed only in the
1D dataset, describe two thresholds for laser power.
Laser power exceeding the upper threshold ablated
the material; hence, ‘ablated’ data points were recor-
ded. Insufficient laser power, which was below the
lower threshold, could not produce graphitic carbon.
‘no LIGC engraved’ indicates this phenomenon as
engravement was not produced on the material sur-
face. From a physics perspective, these data points
describe different experimental outcomes, and they
can all be labeled as ‘failed’ (i.e., failure to produce
any engravement) to build classification models. In
the 1D experiments, laser scanning velocity was con-
stant, whereas the number of laser lines, laser res-
olution, irradiated width, and laser power varied.
In contrast, in the 2D experiments, the irradiated
width was constant, whereas laser resolution, velo-
city, and power varied. The number of laser lines
is directly proportional to laser resolution, which is
not an independent parameter for the 2D dataset.
Tables 1 and 2 provide more details about the experi-
mental designs for the 1D and 2D datasets. Data dis-
tributions for the 1D and 2D datasets are shown in
figures 2 and 3.
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Table 1. Design of experiments for the 1D dataset.

Processing parameters Values

Number of laser lines 1, 2, 3
Laser resolution (DPI) 150, 300, 600, 1200
Laser velocity (mm s−1) 31.75
Laser power (% of 75 W) 4–21
Irradiated width (µm) 254, 275, 296, 339, 423, 593

Table 2. Design of experiments for the 2D dataset.

Processing parameters Values

Laser resolution (DPI) 150, 300, 600, 1200
Laser velocity (mm s−1) 15.9, 31.7, 47.6, 63.5, 79.4,

95.3, 111, 127, 143, 159,
175, 190, 206, 223, 238, 254

Laser power (% of 75 W) 2–15

3. Predictive modeling framework

Figure 4 illustrates the overall predictive modeling
framework. The evaluation metrics include accuracy
for the classification model and mean absolute per-
centage error (MAPE) for regression models. After
being optimizedwith a tuning algorithmon the train-
ing dataset, the hyperparameters were tested on the
test dataset, and the MAPE on the test datasets was
calculated. The machine learning algorithms were
tested on three train/test split ratios, including 70/30,
80/20, and 90/10.

3.1. Hyperparameter tuning
Tuning hyperparameters is crucial for building accur-
ate machine learning models. The two most com-
monly used tuning techniques are grid search and
random search. The grid search method divides
hyperparameters into a grid space. Each point within
the grid space represents a combination of the hyper-
parameters. The grid search method is a brute force
method; hence, its computational expense scales with
the size of the dataset. The random search method
operates similarly to the grid search method; how-
ever, instead of searching all possible combinations
in the grid space, random search only tests some
combinations randomly. Thus, a random search may
only find suboptimal hyperparameters. In this study,
Optuna was used to address the limitations of tradi-
tional tuning methods. Optuna is an effective hyper-
parameter tuning method implemented to tune vari-
ous machine learning algorithms [29]. The backbone
of Optuna is the tree-structured Parzen estimator
algorithm (TPE) [30]. To find the optimal hyperpara-
meters, TPE uses Bayes rule, and it consists of a series
of steps: (1) define the range of hyperparameters and
record some initial results with randomcombinations
of hyperparameters, (2) form two groups from the
initial records based on their quantile, then calcu-
late their densities, (3) model the two-group based on

Parzen estimator to suggest a probability of promising
hyperparameters that likely yield optimal results. TPE
is an iterative process; subsequent steps are sugges-
ted based on the density functions of previous res-
ults.Moreover,Optuna also features pruning (or early
stopping) which allows the tuning algorithm to stop
searching for hyperparameters in specific directions if
the results do not improve within specific iterations.
Overall, compared to the grid and random search,
Optuna is a more effective tuning algorithm for this
study due to its informed searching sequences.

3.2. Building a classificationmodel with random
forest
RF was selected to perform the classification task due
to its unique advantages. Tree-based methods such as
RF are not sensitive to data scaling and multicollin-
earity; hence, cumbersome data preprocessing can be
avoided. RF randomly selects subsets of features to
create trees; then, all the trees are bagged. Each tree
represents a vote, and the initial classification of an
input vector is made based on the most votes. The
decisions on choosing the nodes are based on inform-
ation gain. RF makes decisions to maximize inform-
ation gain. In this work, entropy was used as inform-
ation gain, which is defined as:

Gain(xi,A) = Entropy(xi)− EntropyA (xi) , (1)

and entropy (or log loss) is defined as:

Entropy(xi) =
k∑

i=0

−pi log2 pi, (2)

where xi is the instance (observation), in feature (row)
A, pi indicates the probabilities of xi being classified
in Ci (where Ci is the correct label of xi). Info(xi)
is the entropy of the parent node (before splitting),
and InfoA (xi) is the entropy of the child node (after
splitting). The tree algorithm implemented in RF is
classification and regression tree which only creates a
binary tree to find the best-split node for one inde-
pendent variable at a time [31]. This tree algorithm
may lead to an unstable tree causing poor generalized
prediction performance. Thus, hyperparameter tun-
ing must be carefully executed to combat this over-
fitting issue. RF models were built to classify suc-
cessful and failed trials indicating the conditions of
LIGC engravement. Stratified sampling was imple-
mented to split datasets into three train/test split
ratios, including 70/30, 80/10, and 90/10. This con-
cludes the explanation and model-building steps for
the RF classification models.

3.3. Preprocessing data for regressionmodels
Data preprocessing consists of several steps. First, we
implemented standardization. Second, we created a

4
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Figure 2. 1D dataset visualization for successful LIGC engravement cases. (a) Number of laser lines, (b) laser resolution,
(c) irradiated width of substrates, (d) percentage of laser power, and (e) polyimide sheet resistance (target variable).

Figure 3. 2D dataset visualization (a) laser resolution, (b) percentage of laser power, (c) laser velocity, and (d) polyimide sheet
resistance (target variable).
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Figure 4. Predictive modeling framework.

new dataset by combining 1D and 2D datasets. Third,
we removed data points with high resistance values
based on their changes with respect to laser EPUA.
Standardization is a scaling method where the val-
ues are centered around the mean with a unit stand-
ard deviation. While standardization does not affect
XGBoost andRFmodels,MARS, SVM-RBF, andMLP
could benefit from standardization since they are
affected by scaling. For instance, the MARS model is
an ensemble of multiple piecewise linear functions
characterized by hinge functions. Linear functions
describe the relationship between independent and
dependent variables with coefficients. As such, large-
scaling variables have more influence than smaller-
scaled ones; however, this does not necessarily mean
they are significant predictors. As a result, standard-
ization was performed on independent variables for
the 1D and 2D datasets to ensure the consistency
of data scales, which theoretically should enhance
the performance of the MARS, SVM-RBF, and MLP
models.

A new dataset was created by combining 1D and
2Ddatasets because they contain LIGC resistance data
collected from similar experiments where lines and
squares were created. To merge the 1D and 2D data-
sets, the irradiated width was removed from the 1D
dataset. The number of laser lines was added in the
2D dataset to signify that the number of overlapping
laser passes is significantly larger in squares than in
lines. However, in large squares, the total number of
lines is directly proportional to DPI and not an inde-
pendent parameter. Furthermore, it does not have the
same physical meaning as in 1D lines since the num-
ber of laser passes in every position does not depend
on it. Therefore, an arbitrary dummy value can be
chosen for the number of lines in large squares. Based
on the experimental data, the number of lines for the
2D dataset ranges from 24 to 189. We used 189 as the
dummy variable.

We also filtered high resistance values based on
their changes with respect to laser EPUA. The initial
MAPE for all regression models was relatively high
without filtering out these high resistance values. The
highMAPE was mainly because the models could not
predict high resistance values. Examining the plots
of the LIGC sheet resistance with respect to laser
energy per pulse (EPP) and laser EPUA in figure 5
reveals a pattern: the resistance for each experimental
configuration almost always starts at a significantly
high value before stabilizing to a semi-linearly path.
Since this study aims to predict the low resistance
value achieved by maximizing energy delivery and
pulse overlap, these high resistance values are gener-
ally not of primary interest; thus, the data points with
high resistance values are considered outliers. The
EPUA and energy per pulse equations are described as
follows:

EPUA= 75W∗Power∗
Resolution

Velocity
, (3)

Energy per pulse=
75W∗Power

Velocity∗Resolution
, (4)

where power denotes the percentage power of the
75 W CO2 laser, resolution denotes the laser resol-
ution value in dots per inch, and velocity denotes
the laser velocity value in millimeters per second.
This study proposes an analysis of change in resist-
ance with respect to EPUA, which is referred to as
resistance gradient for short. The resistance gradient
was calculated by dividing the change of sheet resist-
ance by the change of EPUA. Intrinsically, sorting the
resistance values in an ascending order will assist in
removing these high resistance values. However, since
sheet resistance data points were recorded within
their specific experimental designs, each resistance
value should be compared to others within its exper-
imental groups rather than the entire population.

6
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Figure 5. Sheet resistance distribution for 1D dataset with respect to (a) energy per pulse and (b) energy per unit area.
Representatives of sheet resistance distribution for the 2D dataset with respect to (c) energy per pulse and (d) energy per unit
area. For each laser resolution group in the 2D dataset, three representatives of the velocity groups are plotted. Reprinted from
[12], Copyright (2021), with permission from Elsevier.

The datasets were divided into different groups to
determine the resistance gradient. For the 1D data-
set, three groups were created based on the num-
ber of laser lines. Each group was further divided
into three subgroups based on the laser resolution.
By contrast, the 2D dataset was divided based on
different criteria. Since the 2D dataset contains only
square laser patterns, the first criterion was laser
resolution, which resulted in four groups. However,
while sorting and evaluating the resistance gradi-
ent for the 2D dataset, errors of dividing by zero
change in total laser EPUA occur, i.e., two or mul-
tiple data points with equal EPUA. For instance, the
EPUA value of a data point with a laser velocity of
15.875 mm s−1 and a percentage laser power value
of 14% is identical to one of a data point with a
laser velocity value of 3.175 mm s−1 and a percent-
age laser power value of 7%. Therefore, even though
some values in the 2D dataset share identical values of
EPUA, they describe different experimental paramet-
ers. Hence, each laser resolution group in the 2Ddata-
set was further divided based on the laser velocity. A
summary of the group formation process is shown in
table 3.

In summary, the 1D dataset was divided into 12
groups of four main groups (laser lines) and three

subgroups (laser resolutions). The 2D dataset was
divided into 16 groups of four main groups (laser
resolutions) and four main subgroups (laser velo-
city). Figure 5 shows that different experiment groups
exhibited varying ranges of resistance. Since char-
acterizing the resistance gradient to filter high data
points requires the resistance gradient values between
all experiment setups to be comparable, a normaliz-
ation step, which divides each calculated resistance
gradient by the difference between the highest res-
istance and lowest resistance within each group, was
applied. Figures 6 and 7 show the original values
of the normalized resistance gradient in the 1D and
2D datasets. The plotted results are scaled differently
based on the range of the groups.

Based on figures 6 and 7, high resistance gradi-
ents in the 1D and 2D datasets were observed. For the
1D dataset, the highest resistance gradient was close
to −40 (i.e., the normalized resistance decreases at
40 per J cm−2), followed by a value of −28. For the
2D dataset, the highest resistance gradient of more
than −250 was observed. Removing these exception-
ally high resistance data points can improve the per-
formance of the predictive models. The values of±10
were used as the thresholds to remove outliners for the
1D and 2Ddatasets, respectively. Figures 8 and 9 show

7
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Table 3. Summary of criteria for group formation.

Dataset 1st criterion 2nd criterion

1D Laser lines (number of lines) Laser resolution (DPI)
2D Laser resolution (DPI) Laser velocity (mm s−1)

Figure 6.Original normalized resistance gradient for the three groups in a 1D dataset with filtering thresholds as red dash lines for
(a) one line group (51 data points), (b) two lines group (21 data points), and (c) three lines group (17 data points).

that the maximum resistance gradients were approx-
imately −6 and −10 for the 1D and 2D datasets,
respectively, after removing the high resistance data
points. Noticeably, some lower resistance data points
were also removed. While these resistance values are
relatively low compared to the entire population, they
are exceptionally high resistance data points within
their groups. Hence, these data points can only be
detected and filtered through the resistance gradient
process.

In addition, the 1D and 2D datasets are recog-
nized as small datasets, which may be subjec-
ted to disproportionate splitting and overfitting.
Disproportionate splitting occurs when the distribu-
tion of samples in the training data and test data does
not represent the population distribution. A dispro-
portionate sampling may produce a low bias accur-
acy. For instance, a random sampling process may
output a test dataset consisting of a large fraction of
low-value points and a negligible sample for middle
to high-value points. High-accuracy regression mod-
els built to predict this test dataset can only predict
low-value data points. These models are impractical
due to the distortion of the sampling training and
test dataset. Hence, in this study, stratified sampling
was used to address this issue. Moreover, overfit-
ting is another issue when building predictive models
with small datasets. The smaller the dataset, the more
models can be built to fit. Complex models may yield
excellent accuracy on training data while returning a
poor performance on test data. This study performed
hyperparameter tuning with cross validations on the
dataset to prevent overfitting.

3.4. Building a regressionmodel with XGBoost
XGBoost is a tree-based algorithm utilizing gradient
descent to minimize the loss function in an iterat-
ive sequence [32]. XGBoost can be implemented for
both regression and classification tasks; however, for
this study, XGBoost was implemented only to build
regression models. XGBoost is built upon the found-
ation of the traditional gradient-boosting algorithm
proposed by Friedman [33]. Like Friedman’s gradient
boosting algorithm, XGBoost still uses weak learners
(i.e., decision stumps or trees with singular nodes)
to build predictive models. However, compared to
the vanilla version, XGBoost improves computing
time by introducing second-order Taylor’s series
approximation for loss function and parallel pro-
cessing. Moreover, regularization is also implemen-
ted in XGBoost to prevent the model from becoming
overcomplex, leading to overfitting. Prediction out-
puts for XGBoost regression are defined as:

ŷ= ϕ (xi) =
κ∑

k=1

fk (xi) , (5)

where ŷ denotes the predicted LIGC sheet resistance
values, xi are the input variables which are defined
as input variables in 1D and 2D datasets (tables 1
and 2), fk = ωq (x) is the additive function evaluated
as tree structure q and leaf weights ω. Equation (5)
explains that the prediction output is calculated as the
sum of the weight function in each weak learner. Like
most other classification and regression algorithms
in machine learning, XGBoost optimizes an object-
ive function by minimizing a loss function to train

8
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Figure 7. Original normalized resistance gradient for the four groups in 2D dataset prior with filtering thresholds as red dash
lines for (a) 150 DPI group (99 data points), (b) 300 DPI group (116 data points), (c) 600 DPI group (101 data points), and
(d) 1200 DPI group (54 data points).

Figure 8. Normalized resistance gradient for the three groups in the 1D dataset after applying filters for (a) one line group (48
data points), (b) two lines group (21 data points), and (c) three lines group (17 data points).
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Figure 9. Normalized resistance gradient for the four groups in the 2D dataset after applying filters for (a) 150 DPI group (86 data
points), (b) 300 DPI group (92 data points), (c) 600 DPI group (100 data points), and (d) 1200 DPI group (49 data points).

the model additively. The objective function used in
additive training of XGBoost can be described as:

L(t) =
n∑

i=1

l[yi, ŷ
(t−1)
i + ft (xi)]+Ω( ft) , (6)

where 1 is the loss function, which must be differ-
entiable and convex for gradient descent, Ω is the
regularization term, and t denotes the t-iteration.
Instead of the traditional optimization by search-
ing the Euclidean space, the function describes the
optimization process by adding a tree represented by
the term ft (xi). In the other term, the tree, which
improves the objective function the most, will be
added in the next iteration. The penalty term Ω is
defined as:

Ω( f) = γT+
1

2
λ||ω||2, (7)

where T stands for the terminal, denoting the
nodes (or leaves) in a tree, γ is the user-defined

parameter used to prune the tree, thus, preventing
over-complexity, and λ (lambda) is the penalty term
that shrinks the leaf weights. Like ridge regression,
if λ = 0, regularization is not being implemented; if
λ> 0, leaf weight shrinks toward zero. To evaluate the
objective function ft (xi) term in equation (7), second-
order Taylor’s series approximation is used, and the
objective function can be re-written as follows:

L(t) ∼=
n∑

i=1

l

[
yi, ŷ

(t−1)
i + gift (xi)+

1
2
hif

2
t (xi)

]
+Ω(ft) ,

(8)

where gi = ∂ŷi(t−1) l(yi, ŷ
(t−1)
i ) and hi = ∂2

ŷ(t−1)
i

l

(yi,ŷ
(t−1)
i ) are the first and second derivatives of the

loss function ft (where gi stands for gradient and hi
stands for Hessian). Removing the constant terms
(i.e., terms do not contain leaf weight ω). The object-
ive function can be re-written as:

10
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L(t) ∼=
n∑

i=1

[gift (xi)+
1

2
hif

2
t (xi)]+Ω(ft) , (9)

to find the optimal value for L(t), one can take the
first-order derivative of the objective function and
then set it to zero. Solving for ω yields:

ωoptimal =−
∑n

i=1 gj∑n
i=1 hj +λ

. (10)

As mentioned, XGBoost optimizes the objective
function by adding the optimal leaf weight score ω
of the tree structure q. Then, scores measuring the
quality of tree structure q can be evaluated to find
the following optimal tree structure q. Define Ij as the
instance set of leaf j, this scoring metric of quality for
a given tree q is defined as:

L(t) (q) =−1

2

T∑
j=1

(∑
i∈Ij

gi
)2

∑
i∈Ij

hi +λ
+ γT. (11)

In this study, the loss function for XGBoost was
the squared error loss function. The squared loss
function for a single observation and prediction is
defined as:

(yi, ŷi) =
1

2
(yi − ŷi)

2, (12)

substituting ft as the squared loss function error and
evaluating hi and gi, weight ω from equation (10)
will be equal to Sum of residuals

Number of residuals+λ . Hence, XGBoost
regression with squared error loss function trains the
model iteratively by minimizing the objective func-
tion through preceding residuals. Since this study
built predictive models on relatively small data-
sets, XGBoost must be implemented cautiously to
avoid overfitting. XGBoost employs exact greedy
algorithms to search for its optimal learner; that is,
the algorithm picks the best possible split loss reduc-
tion after iterating over all given input variables.
This behavior leads to the issue where the algorithm
choice for local optimality might not equate to an
acceptable global solution. Thus, tree complexity-
related and sampling parameters, such as tree depth,
tree pruning, regularization parameters, etc., were
carefully tuned to ensure the model is conservative
enough to combat overfitting. As a reminder, five-fold
cross-validation was also used to combat overfitting
of the predictive model. The results and discussion
section will provide further information for XGBoost
hyperparameters.

4. Results and discussion

The 1D dataset for classification contains 89 and 111
‘success’ and ‘fail’ data points. Figure 10 shows the
classification accuracy of RF. As expected, reducing
the size of the training data size reduced prediction
accuracy.

XGBoost models were built for 1D and 2D data-
sets. Figure 11 shows the prediction accuracy of
XGBoost for the 1D dataset in terms of MAPE for
train/test split ratios of 90/10, 80/20, and 70/30. The
best prediction accuracy of 7.08% was achieved by
XGBoost on the 90/10 split ratio. The predictive per-
formances of XGBoost decreased as the training data-
set size decreased: the model trained with the 90/10
split ratio achieved the best accuracy, followed by the
one trained on the 80/20 split ratio as the second
best, and the models trained on the 70/30 split ratio
as the least accurate one. Predictions for low LIGC
sheet resistances (lower than 100 Ω sq−1) were rel-
atively accurate. However, XGBoost still struggled to
capture the high LIGC sheet resistance data points.
This phenomenon could be attributed to the dispro-
portionate distribution of the data points for the low
and high-value LIGC sheet resistance in the 1D data-
set: the population of low-value data points is much
denser than the high-value data points. Compared
to the prediction accuracy for high resistance data
points, low-value data points would likely to be pre-
dicted with higher accuracy since more information
about the low-value data points is readily available
to learn. If these high sheet resistance values are con-
sidered as outliers recorded while increasing delivered
EPUA, they can be filtered out during the resistance
gradient filtering process by adjusting the thresholds.
In this case, the performance of XGBoost algorithms
should increase significantly since the highMAPEwas
mainly caused by the prediction errors of these high
resistance values.

Figure 12 shows the prediction accuracy of
XGBoost for the 2D dataset. The best model was
achieved with the 90/10 split ratio (8.75% MAPE).
Similar to the 1D dataset results trend, the accur-
acy was lower when the training dataset size reduced.
Another similar trend can be observed in 2D dataset
results: low resistance values (lower than 100Ω sq−1)
were predicted with high accuracy. In compar-
ison, the prediction errors for high resistance values
(higher than 100 Ω sq−1) were much higher. Thus,
improved accuracy can be achieved by adjusting the
filtering thresholds in the resistance gradient analysis,
which could remove these high resistance values.

Figure 13 shows the prediction accuracy of
XGBoost for the merged dataset. The XGBoost model
built with the 90/10 split ratio consistently achieved
the lowest MAPE at 14.63%. Figure 13 suggests that
the prediction accuracy of XGBoost on the merged
dataset is worse than those on 1D and 2D datasets.
Tables 4 and 5 show comprehensive comparisons.
Tables 6 and 7 provide the hyperparameters for the
RF classification andXGBoost regressionmodels with
optimal accuracy and MAPE.

Figure 14 shows a summary of all XGBoost regres-
sion models and the feature importance identified
by XGBoost models. XGBoost achieved excellent pre-
diction accuracy on the 1D and 2D datasets. In
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Figure 10. Confusion matrix for the RF classification model for three different train/test split ratios (a) 95% accuracy with 90%
training dataset, (b) 90% accuracy with 80% training dataset, and (c) 83.33% accuracy with 70% training dataset.

Figure 11. XGBoost prediction accuracy for the 1D dataset with the train/test split ratios of (a) 90/10, (b) 80/20, and (c) 70/30.

Figure 12. XGBoost prediction accuracy for the 2D dataset with the train/test split ratios of (a) 90/10, (b) 80/20, and (c) 70/30.

Figure 13. XGBoost prediction accuracy for the merged dataset with the train/test split ratios of (a) 90/10, (b) 80/20, and (c) 70/30.
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Table 4. Results for the comparative study of machine learning models for the 1D dataset in terms of MAPE (%).

Algorithms/splitting ratio 70/30 80/20 90/10

MLP 49.27 43.94 41.22
SVM-RBF 25.92 18.22 18.72
RF 20.27 18.79 16.57
MARS 28.82 12.15 8.52
XGBoost 15.08 8.63 7.08

Table 5. Results for the comparative study of machine learning models for the 2D dataset in terms of MAPE (%).

Algorithms/splitting ratio 70/30 80/20 90/10

MLP 46.97 41.60 40.28
SVM-RBF 25.08 21.83 22.74
RF 22.38 22.19 21.55
MARS 29.31 29.47 21.36
XGBoost 16.89 12.42 8.75

Table 6.Hyperparameters for the RF classification model with the train/test split ratio of 90/10.

Random forest classification model

Criteria Entropy

Minimum sample split 5.37× 10−2

Minimum samples leaf 1.19× 10−2

Max depth 5
Max features 5
Number of estimators 11

Table 7. Hyperparameters for XGBoost with a train/test split ratio of 90/10.

XGBoost
hyperparameters 1D dataset 2D dataset Merged

Sample ratio of
training data

0.8 0.8 0.8

Sample ratio of features 0.8 0.8 0.8
Early stopping rounds 10 10 10
Alpha 28.55 6.72 2.196
Gamma 5 2.88 0.048
Lambda 5.59× 10−2 2.06 27.53
Maximum delta steps 84 196 49
Learning rate 0.1 0.1 0.1

particular, figure 14 shows that for 1D and 2D data-
sets, laser resolution was the most significant para-
meter when buildingXGBoost predictivemodels. The
finding that laser resolution was the most significant
feature is consistent with experimental and numerical
simulation results. These results have demonstrated
that the quality of LIGC increases with larger DPI
values due to the more closely spaced pulses, smaller
energy per pulse, and a larger number of consecutive
pulses for every point on the surface, which leads to a
more consistent temperature distribution [12].

Table 5 suggests that while theMARSmodels pre-
dicted LIGC sheet resistance on the 1D dataset with

relatively high accuracy, the MARS models on the
2D dataset could potentially be under-fitted due to
the large MAPE; thus, increasing models’ complex-
ity could theoretically increase models’ performance
on the test dataset. However, for the MARS mod-
els trained on the 2D dataset, MAPE for five-fold
cross validation results on the training datasets were
approximately equal to the ones evaluated on the test
datasets. This result suggests that the models were
not underfitted, but failed to learn the trend of the
2D training and test datasets. Perhaps, the MARS
models suffered from multicollinearity [34]. During
the forward selection process, multicollinearity (or
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Figure 14. (a) Prediction accuracy for all regression models, and XGBoost models’ features importance for (b) 1D dataset, and
(c) 2D dataset.

collinearity if MARS only considers two independ-
ent variables) forces the algorithm to place its knots
on one of the independent variables. This choice is
arbitrary if the loss function is roughly identical; how-
ever, this arbitrary decision dramatically affects the
subsequent knots. The MAPE of the RF and SVM-
RBF regression models on the 1D and 2D data-
sets were comparable to those of the MARS mod-
els. For the RF regression models, the results sug-
gest that the models could not accurately predict the
LIGC sheet resistance. While XGBoost implemen-
ted boosting and bagging to build models, the RF
regression models were built through bagging only.
Hence, it implies that bagging alone could not gen-
eralize the LIGC data. The SVM-RBF models also
exhibited comparatively high MAPE on both data-
sets. These results may be attributed to the assump-
tion of the Gaussian distribution in the SVM-RBF
algorithm. MLP generally requires large volumes of
data to build accurate models [35]. Data manipula-
tion techniques can improveMLP’s accuracy [36–38].
The performance of MLP models were relatively
poor because the 1D and 2D datasets are relat-
ively small. It should be noted that while the per-
formance of traditional machine learning models
(i.e., SVM-RBF, RF, MARS, and XGBoost) trained
on the 1D dataset was superior to the perform-
ance of the models trained on the 2D dataset,
the reversed result was observed for MLP. Another
observation is that the performance of the XGBoost

models trained on the merged dataset were worse
than ones of the XGBoost models trained on the 1D
and 2D datasets separately. This is perhaps because
the data distributions for 1D and 2D datasets are
different.

5. Conclusion

A two-step machine learning-based computational
framework was introduced to predict the LIGC sheet
resistance. For the 1D dataset containing data collec-
ted from a single line, two lines, and three lines of
laser engravement, RFwas implemented to build clas-
sification models to classify successfully engraved tri-
als and failed ones. An accuracy of 95% was achieved
with the classification model. Then, the comparative
study showed that XGBoost outperformedMARS, RF,
SVM-RBF, and MLP. The XGBoost models predicted
the LIGC sheet resistance of the 1D and 2D data-
sets with a MAPE of 7.08% and 8.75%, respectively.
Furthermore, XGBoost identified laser resolution as
the most significant parameter, which is consistent
with the experimental results reported in our previ-
ous study where we found that increasing laser res-
olution reduced sheet resistance. We also found that
the prediction accuracy of the models built on the
merged dataset was lower than the prediction accur-
acy of the models built on the 1D and 2D datasets
separately.
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